

B-NOW Visit to NREL/NWTC July 1, 2015

Model-Based and Data-Driven Strategies for Wind Turbine Prognostics and Health Management

Dr. Michael H. Azarian, Dr. Peter Sandborn, Dr. Michael Pecht

Center for Advanced Life Cycle Engineering University of Maryland, College Park

mazarian@calce.umd.edu

1-301-405-7555

CALCE Research Focus

PHM Approach

• **Data-driven condition monitoring** and **physics-of-failure based damage assessments** are used to evaluate the health of a system, to predict its remaining useful life, and to implement risk-mitigating actions such as *preventative maintenance*.

Remaining Useful Life (RUL) Assessment

Canaries for PHM of Offshore Electronics: MOWER Project

- Offshore wind turbines operate in harsh environmental conditions that include humidity, salt contamination, and temperature variations that can lead to electrical failures due to *corrosion* and *electrochemical migration* of metals.
- Electrical system failures account for a large percentage of wind turbine failures.
- Advanced warning of these failures can be provided by "canaries," which are *structures designed to degrade faster than the functional product into which they are incorporated*.

Corrosion on an IC package

Electrical failures due to moisture and metal migration

Canary Design Approach

- Canary design by *geometric error-seeding*: acceleration of ECM failure relative to the functional circuit can be obtained by changing the spacing of the conductors in the comb structure under different salt contamination levels.
- Canary design by *load error-seeding*: Accelerating the failure mechanism by increasing the voltage applied across the adjacent conductors.

Canaries: Testing and Simulation

• The lifetime at 40V is about 15% of the lifetime at 5V due to electrochemical migration – this provides a basis for canary design using load error-seeding.

• Simulations have been performed for design of canaries applicable to indeterminate or varying operating conditions.

Model-Based Signal Analysis: Condition Monitoring of Gearbox using Electrical Signals

- Gearbox failures are responsible for long down-time and high repair costs.
- Fault detection of mechanical structures by monitoring the electrical signal would be a low-cost and non-intrusive method of health monitoring, complementing existing techniques.
- Objective: Detection of mechanical faults by analyzing the electrical output from the turbine.

Dynamic System Modeling Approach

Dynamic System Modeling Approach

Dynamic System Modeling Procedure

- Estimation of input torque captured by the blades
 Aerodynamic torque generated due to wind acting on the rotor blades
- 2. Wind turbine gearbox modeling

Dynamic equations derived by carrying out a force balance on the lumped components, using parameters obtained from the literature

- 3. DFIG modeling: Equivalent circuit
- 4. Gear fault modeling and sensitivity analysisOccurrence of cracks in gear 1/2a and 2b/3 were simulated and analyzed.

Gear Mesh Modeling

- Mechanical coupling between gear stages is modeled using a spring (k) and dashpot (q) to represent the gear tooth interactions.
- During the meshing of gears, the load is transmitted alternately through two points of contact and one point of contact.

Illustration of Lumped Component Modeling

- A force balance is used to derive the system of governing equations for the gearbox.
- A representative illustration of this method is shown here for a simplified gearbox.

$$\begin{split} I_{i}\ddot{\theta}_{i} + r_{i}k_{mb}(r_{i}\theta_{i} - r_{o}\theta_{o}) + r_{i}q_{mb}(r_{i}\dot{\theta}_{i} - r_{o}\dot{\theta}_{o}) &= T_{in} \\ I_{o}\ddot{\theta}_{o} + r_{o}k_{mb}(r_{o}\theta_{o} - r_{i}\theta_{i}) + r_{o}q_{mb}(r_{o}\dot{\theta}_{o} - r_{i}\dot{\theta}_{i}) \\ &+ k_{c}(\theta_{o} - \theta_{r}) + q_{c}(\dot{\theta}_{o} - \dot{\theta}_{r}) = 0 \\ I_{r}\ddot{\theta}_{r} + k_{c}(\theta_{r} - \theta_{o}) + q_{c}(\dot{\theta}_{r} - \dot{\theta}_{o}) = -T_{el} \end{split}$$

Nomenclature:

I - inertia

T-torque

k – stiffness

q – damping

 θ – angle of

rotation

r - radius

• Using Ohm's law and Faraday's law, the dynamic equations of the flux linkages in the generator are calculated.

$$V_{Sq} = R_S i_{Sq} + \frac{d\varphi_{Sq}}{dt} + \omega_e \varphi_{Sd}$$
$$V_{Rq} = R_R i_{Rq} + \frac{d\varphi_{Rq}}{dt} + (\omega_e - \omega_r) \varphi_{Rd}$$

Electrical torque generated is given by:

$$T_{el} = \frac{3}{2} \left(\frac{p}{2} \right) \left(\varphi_{Sd} i_{Sq} - \varphi_{Sq} i_{Sd} \right)$$

Coupling between electrical and mechanical model <u>Nomenclature:</u> φ – flux V – voltage R – resistance M – mutual inductance L – self inductance ω , $\dot{\theta}$ - angular velocity p – number of pole pairs <u>Subscripts:</u> S – stator of generator r – rotor of generator

Gear Fault Modeling

• Presence of a crack in a gear tooth is modeled as a reduced tooth bending stiffness during contact.

Finite element model of crack in a gear tooth to calculate tooth bending stiffness⁵ (20% reduction in stiffness)

Simulation Result: Effect of Crack in Gear 2b/3 on Electrical Torque Signal

- Variations can be observed in the electrical torque time domain signal due to presence of a crack in gear 2b/3.
- Different levels of fault were simulated and the frequency spectrum of the electrical torque signal was analyzed.

Simulation Result: Effect of Fault Severity

Calce Center for Advanced Life Cycle Engineering

Deriving Value from PHM at the System and Enterprise Levels

- System-level PHM value means taking action based on prognostics to manage one specific instance of a system, e.g., one vehicle or one turbine. The actions tend to be "real-time" and consist of:
 - Modify how you sustain the system (e.g., arrange for a maintenance action)
 - Modify the mission (e.g., reduce speed, take a different route)
 - Modify the system (e.g., adaptive re-configuration)
- Enterprise-level PHM value means taking action based on prognostics to manage an enterprise, e.g., a fleet or a farm of turbines. The actions are longer-term strategic planning things (usually not real-time):
 - Optimizing the logistics
 - Management via availability and other types of outcome-based contracts

Understanding the Cost of PHM

Return on Investment for One Turbine

Maintenance Optimization Under a PPA for a Farm

Real Options Analysis ("maintenance options"):

- Allow determination of optimum wait time after an RUL indication for individual turbines
- Extended to wind farms managed using power purchase agreements where the state of repair of other turbines is incorporated into the maintenance decision process

Understanding the O&M Cost of Wind Turbines and Wind Farms

The optimum for an individual system instance is not necessarily the optimum for the system instance within a population, if the population is managed via an "outcome-based" contract (like many PPAs)

Point of contact for cost modeling:

Peter Sandborn sandborn@calce.umd.edu (301) 405-3167

Capacitor Reliability and Risk Mitigation MLCC leakage

MLCC modeling Flex MLCC

Al Electrolytic

Al Electrolytic

Polymer Al

- Reliability assessment
- Statistical lifetime distributions
- Critical-to-reliability parameters
- Lot acceptance ٠
- Technology adoption ٠
- Part selection and screening
- Quality assurance

- Supply chain management
- Counterfeit detection
- Stress modeling
- Failure risk estimation
- Lifetime modeling
- Failure analysis techniques
- Dielectric conduction mechanisms

EDLC (Supercap)

Embedded

MnO₂-Tantalum

Polymer Tantalum

Bearing Reliability and Condition Monitoring

A wide range of characteristics are monitored and analyzed for fault detection, diagnosis of defects, and prognostics:

vibration; acoustic emission; acoustic sound; wear debris; nano-hardness; surface topography; lubricant chemistry; motor current; rotational speed.

Fault Detection and Prognostics of Coils

- Failure Modes
 - Wire-to-wire or wire-to-ground short
 - Coil open
- Failure Mechanisms
 - Dielectric breakdown (from thermal loading, electrical transients, defects)
 - Corrosion can cause wire necking and loss of material, or terminal damage
- Prognostics and Health Monitoring
 - Identify signatures that correlate with electrical coil aging and degradation
 - Determine and predict how the electrical characteristics of the coil change during the aging process

Opportunities for Collaborative Research

- Key components (e.g., control electronics, power electronics, drivetrain):
 - Reliability assessment
 - Failure model development
 - Health monitoring approaches
 - PHM algorithm development
- Model-based health monitoring
 - Sharing of data and models
 - Application to new designs
- O&M cost modeling analysis
 - ROI, optimization of decision-making, data sharing, etc.

CALCE can serve as a team member on proposals for reliability, PHM, and ROI analysis.