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PHM Approach

« Data-driven condition monitoring and physics-of-failure based damage
assessments are used to evaluate the health of a system, to predict its
remaining useful life, and to implement risk-mitigating actions such as
preventative maintenance.
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Canaries for PHM of Offshore Electronics:
MOWER Project

» Offshore wind turbines operate in harsh environmental conditions that include
humidity, salt contamination, and temperature variations that can lead to
electrical failures due to corrosion and electrochemical migration of metals.

 Electrical system failures account for a large percentage of wind turbine failures.

» Advanced warning of these failures can be provided by “canaries,” which are
structures designed to degrade faster than the functional product into which
they are incorporated.

Corrosion on an IC package

Electrical failures due to moisture and metal migration

University of Maryland
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Canary Design Approach

« Canary design by geometric error-seeding: acceleration of ECM
failure relative to the functional circuit can be obtained by
changing the spacing of the conductors in the comb structure
under different salt contamination levels.

e Canary design by load error-seeding: Accelerating the failure
mechanism by increasing the voltage applied across the adjacent
conductors.
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Failure distribution Failure distribution [§§ |
of canary of actual product |

Probability density

Examples of canary test
structures

Time
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Canaries: Testing and Simulation

* The lifetime at 40V is about 15% of the lifetime at 5V due to
electrochemical migration — this provides a basis for canary design
using load error-seeding.
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« Simulations have been performed for design of canaries applicable to
Indeterminate or varying operating conditions.
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repair costs.

Model-Based Signal Analysis: Condition

Monitoring of Gearbox using Electrical Signals
o Gearbox failures are responsible for long down-time and high

 Fault detection of mechanical structures by monitoring the
electrical signal would be a low-cost and non-intrusive method of
health monitoring, complementing existing techniques.

* Objective: Detection of mechanical faults by analyzing the
electrical output from the turbine.
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Dynamic System Modeling Approach
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Dynamic System Modeling Approach
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Dynamic System Modeling Procedure

1. Estimation of input torque captured by the blades

Aerodynamic torque generated due to wind acting on the rotor
blades

2. Wind turbine gearbox modeling

Dynamic equations derived by carrying out a force balance on
the lumped components, using parameters obtained from the
literature

3. DFIG modeling: Equivalent circuit

4. Gear fault modeling and sensitivity analysis

Occurrence of cracks in gear 1/2a and 2b/3 were simulated and
analyzed.

University of Maryland
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Gear Mesh Modeling

» Mechanical coupling between gear stages is modeled using a spring (k) and
dashpot (q) to represent the gear tooth interactions.

* During the meshing of gears, the load is transmitted alternately through two
points of contact and one point of contact.
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Illustration of Lumped Component Modeling

» A force balance is used to derive the system of
governing equations for the gearbox.

o A representative illustration of this method is
shown here for a simplified gearbox.

Input Gear

1,0; + Tikmp (116; — 1565) + 1:@mp (1:6; — 756,) = Tin -
Ioéo + Tokmb (7"090 — Tiei) T Todmb (Toéo _ Tiéi) j e

+ kc(eo - Hr) + CIc(éo - 97‘) =0
Iré;“ + kc(er - 90) + CIc(ér - éo) = —Tg

Nomenclature: Subscripts: ]
| — inertia i —input gear ke =— [—]T qe
T —torque 0 — output gear
k — stiffness ¢ — shaft coupling
q — damping r — rotor of O
6 —angle of generator I, +
rotation mb — tooth bending
r — radius in — input Generator
el - electrical
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e Using Ohm's law and Faraday's law, the dynamic equations
of the flux linkages in the generator are calculated.

dgg .
_ . q Nomenclature:
Vsq = Rslsq + “dt T W Psa o — flux

dquq V — voltage
VRq = RRqu + p +Rd R — resistance
t M — mutual inductance

L — self inductance
®,0 - angular velocity

Electrical torque generated is

given by: Coupling between p— nur}'lber of pole pairs
3 /p , , electrical and wf

T =3 (_) (Psalsg = Psqlsa)  mechanicalmodel 5 o oonereer
2 \2 q q r — rotor of generator
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Gear Fault Modeling
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Simulation Result: Effect of Crack in Gear
2b/3 on Electrical Torque Signal

 Variations can be observed in the electrical torque time
domain signal due to presence of a crack in gear 2b/3.

« Different levels of fault were simulated and the frequency

spectrum of the electrical torque signal was analyzed.
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Simulation Result
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* Peaks are observed only s
when there is a faultina z ™
gear tooth. G 601

Fault level in gear 2b/3: g0
Case-1: k... = 0.9E7 N/m ool
Case-2: ki, = 0.8E7 N/m g

No fault: k;, = 1E7 N/m -90

. Effect of Fault Severity

20% stiffness
<« reduction

10% stiffness
reduction

No fault
condition

50 100 150 200 250

4 Frequency (Hz)
™ —* No fault condition - - -cr-
< 50 oo stiffness reduction | ® Faultn gear 1/2a s dlfﬁcult
< . to observe in the electrical
5 torque frequency spectrum.
8 -70
E Fault level in gear 1/2a:
580 Case-3: k.. = 1.6E9 N/m

90— ‘ ‘ ‘ | No fault: k.. = 1.8E9 N/m

50 100 150 200 250 300
Frequency (Hz)

calce Center for Advanced Life Cycle Engineering

University of Maryland
Copyright © 2015

16

300



Deriving Value from PHM at the
System and Enterprise Levels

— System-level PHM value means taking action based on prognostics
to manage one specific instance of a system, e.g., one vehicle or one
turbine. The actions tend to be “real-time” and consist of:

* Modify how you sustain the system (e.g., arrange for a maintenance
action)

* Modify the mission (e.g., reduce speed, take a different route)
* Modify the system (e.g., adaptive re-configuration)

— Enterprise-level PHM value means taking action based on
prognostics to manage an enterprise, e.g., a fleet or a farm of
turbines. The actions are longer-term strategic planning things
(usually not real-time):

« Optimizing the logistics
e Management via availability and other types of outcome-based
contracts

University of Maryland
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Understanding the Cost of PHM

Return on Investment for One Turbine
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Maintenance Optimization Under a PPA for a Farm

Real Options Analysis (“maintenance options”):

» Allow determination of optimum wait time after an
RUL indication for individual turbines

» Extended to wind farms managed using power
purchase agreements where the state of repair of

other turbines is incorporated into the maintenance
decision process
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Understanding the O&M Cost of
Wind Turbines and Wind Farms

» The optimum for an individual system Instance Is
not necessarily the optimum for the system
Instance within a population, if the population is
managed via an “outcome-based” contract (like
many PPAS)

Point of contact for Peter Sandborn

cost modeling: ?ggi?%ngclaé;&umd.edu
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Capacitor Reliability and Risk Mitigation

MLCC modeling FIeLCC MLCC leakage
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Bearing Reliability and Condition Monitoring
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A wide range of characteristics are monitored and analyzed for
fault detection, diagnosis of defects, and prognostics:

vibration; acoustic emission; acoustic sound; wear debris; nano-hardness;
surface topography; lubricant chemistry; motor current; rotational speed.
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Fault Detection and Prognostics of Colls
 Failure Modes
— Wire-to-wire or wire-to-ground short Untested Valve

— Coil open
e Failure Mechanisms

— Dielectric breakdown (from thermal
loading, electrical transients, defects)

— Corrosion can cause wire necking and
loss of material, or terminal damage

 Prognostics and Health Monitoring

— ldentify signatures that correlate with
electrical coil aging and degradation

— Determine and predict how the electrical
characteristics of the coil change
during the aging process
University of Maryland
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Opportunities for Collaborative Research
o Key components (e.g., control electronics, power
electronics, drivetrain):
— Reliability assessment
— Failure model development
— Health monitoring approaches
— PHM algorithm development

e Model-based health monitoring
— Sharing of data and models
— Application to new designs

 O&M cost modeling analysis
— ROI, optimization of decision-making, data sharing, etc.

» CALCE can serve as a team member on
proposals for reliability, PHM, and ROI analysis.
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